Mark Scheme

Mark Scheme 4723 January 2007

physicsandmathstutor.com

4753

Mark Scheme

Jan 2007

1	Attempt use of quotient rule to find derivative M1	allow for numerator 'wrong way round'; or attempt use of product rule
	Obtain $\frac{2(3x-1) - 3(2x+1)}{(3x-1)^2}$ A1	or equiv
	Obtain $-\frac{5}{4}$ for gradient A1	or equiv
	Attempt eqn of straight line with numerical gradient	M1 obtained from their $\frac{dy}{dx}$; tangent not normal
	Obtain $5x + 4y - 11 = 0$ A1 5	or similar equiv
2 (i)	Attempt complete method for finding $\cot \theta$ Obtain $\frac{5}{12}$	M1 rt-angled triangle, identities, calculator,A1 2 or exact equiv
(ii)	Attempt relevant identity for $\cos 2\theta$	M1 $\pm 2\cos^2\theta \pm 1$ or $\pm 1 \pm 2\sin^2\theta$ or $\pm (\cos^2\theta - \sin^2\theta)$
	State correct identity with correct value(s) substituted Obtain $-\frac{119}{169}$	A1 A1 3 correct answer only earns 3/3
3 (a)	Sketch reasonable attempt at $y = x^5$	*B1 accept non-zero gradient at <i>O</i> but curvature to be correct in first and third quadrants
		*B1 existing at least in (part of) first quadrant
(b)	Obtain correct first iterate Carry out process to find at least 3 iterates in all M1	B1 allow if not part of subsequent iteration
	Obtain at least 1 correct iterate after the first A1	allow for recovery after error; showing at least 3 d.p. in iterates
		answer required to precisely 3 d.p.
	$ [0 \rightarrow 2.21236 \rightarrow 2.17412 \rightarrow 2.17480 - 1 \rightarrow 2.19540 \rightarrow 2.17442 \rightarrow 2.17480 - 1 $	
	$2 \rightarrow 2.17791 \rightarrow 2.17473 \rightarrow 2.17479 -$	
	$3 \rightarrow 2.15983 \rightarrow 2.17506 \rightarrow 2.17479 -$	→ 2.17479]
4 (i)	Obtain derivative of form $k(4t+9)^{-\frac{1}{2}}$ M1	any constant k
	Obtain correct $2(4t+9)^{-\frac{1}{2}}$ A1	or (unsimplified) equiv
	Obtain derivative of form $k e^{\frac{1}{2}x+1}$ M1	any constant k different from 6
	Obtain correct $3e^{\frac{1}{2}x+1}$ A1 4	or equiv
(ii)	Substitute for t and x in product M1 using t	ical or algebraic = 4 and calculated value of x allow ± 0.1 ; allow greater accuracy
	<u>Or</u> : Obtain $k(4t+9)^n e^{\frac{1}{2}(4t+9)^{\frac{1}{2}}+1}$ M1	differentiating $y = 6e^{\frac{1}{2}(4t+9)^{\frac{1}{2}}+1}$
	Obtain correct $6(4t+9)^{-\frac{1}{2}}e^{\frac{1}{2}(4t+9)^{\frac{1}{2}}+1}$ A1	or equiv
		±0.1; allow greater accuracy
5 (i)	Obtain $R = \sqrt{17}$ or 4.12 or 4.1 B1	or greater accuracy
	Attempt recognisable process for finding α M1Obtain $\alpha = 14$ A1	allow for sin/cos confusion or greater accuracy 14.036
		of ficatel accuracy 14.050
	12	

4753

	,			
Mar	k Sc	hem	e	

Jan 2007

(ii)	Attempt to find at least one value of $\theta + \alpha$ Obtain or imply value 61 Obtain 46.9 Show correct process for obtaining second angle Obtain -75	M1 A1√ A1 e M1 A1		following <i>R</i> value; or value rounding to 61 allow ±0.1; allow greater accuracy allow ±0.1; allow greater accuracy; max of 4/5 if extra angles between –180 and 180
6 (i)	Obtain integral of form $k(3x+2)^{\frac{1}{2}}$ Obtain correct $\frac{2}{3}(3x+2)^{\frac{1}{2}}$	M1 A1		any constant k or equiv
	Substitute limits 0 and 2 and attempt evaluation			for integral of form $k(3x+2)^n$
	Obtain $\frac{2}{3}(8^{\frac{1}{2}}-2^{\frac{1}{2}})$	A1	4	or exact equiv suitably simplified
(ii)	State or imply $\pi \int \frac{1}{3x+2} dx$ or unsimplified vers	sion		B1 allow if dx absent or wrong
	Obtain integral of form $k \ln(3x + 2)$	M1		any constant k involving π or not
	Obtain $\frac{1}{3}\pi \ln(3x+2)$ or $\frac{1}{3}\ln(3x+2)$ Show correct use of $\ln a - \ln b$ property M1 Obtain $\frac{1}{3}\pi \ln 4$	A1 A1	5	or (similarly simplified) equiv
7 (i)	State <i>a</i> in <i>x</i> -direction State factor 2 in <i>x</i> -direction	B1 B1	2	or clear equiv or clear equiv
(ii)	Show (largely) increasing function crossing <i>x</i> -ax Show curve in first and fourth quadrants only	cis A1	2	M1 with correct curvature not touching <i>y</i> -axis and with no maximum point; ignore intercept
(iii)	Show attempt at reflecting negative part in <i>x</i> -axi Show (more or less) correct graph	S		M1 A1 $\sqrt{2}$ following their graph in (ii) and showing correct curvatures
(iv)	Identify 2 <i>a</i> as asymptote or $2a + 2$ as intercept State $2a < x \le 2a + 2$	B1 B1	2	allow anywhere in question allow $<$ or \le for each inequality
8 (i)	Obtain $-2xe^{-x^2}$ as derivative of e^{-x^2} Attempt product rule	B1 *M1		allow if sign errors or no chain rule
	Obtain $8x^7e^{-x^2} - 2x^9e^{-x^2}$			or (unsimplified) equiv
	Either:Equate first derivative to zero and attempt solution Confirm 2Or:Substitute 2 into derivative and show attempt at evaluation	M1 A1	5	dep *M; taking at least one step of solution AG
	Obtain 0	A1	(5)	AG; necessary correct detail required

physicsandmathstutor.com

4753

Mark Scheme

4753	Wark Sche	eme	Jan 2007
(ii)	Attempt calculation involving attempts at y value		M1 with each of 1, 4, 2 present at least once as coefficients
	Attempt $k(y_0 + 4y_1 + 2y_2 + 4y_3 + y_4)$	M1	
	Obtain $\frac{1}{6}(0 + 4 \times 0.00304 + 2 \times 0.36788)$		
	$+4 \times 2.70127 + 4.68880)$	A1	or equiv with at least 3 d.p. or exact values
	Obtain 2.707	A1	4 or greater accuracy; allow ± 0.001
(iii)	Attempt $4(y \text{ value}) - 2(\text{part (ii)})$	M1	1
	Obtain 13.3	A1	2 or greater accuracy; allow ± 0.1
9 (i)	State $-2 \le y \le 2$	B1	
	State $y \le 4$	BI	2 allow <; any notation
(ii)	Show correct process for composition M1	right	ht way round
	Obtain or imply 0.959 and hence 2.16 A1	AG;	G; necessary detail required
	Obtain $g(0.5) = 3.5$	B1	
	Observe that 3.5 not in domain of f	B1	4 or equiv
(iii)	Relate quadratic expression to at least one end of range of f M1	or ec	equiv
	Obtain both of $4 - 2x^2 < -2$ and $4 - 2x^2 > 2$	A1	or equiv; allow any sign in each ($< or \le or >$
			$or \ge or =)$
	Obtain at least two of the <i>x</i> values $-\sqrt{3}$, -1 , 1 , $\sqrt{3}$		
	Obtain all four of the <i>x</i> values	A1	
	Attempt solution involving four x values M1	-	produce at least two sets of values
	Obtain $x < -\sqrt{3}$, $-1 < x < 1$, $x > \sqrt{3}$	AI	6 allow \leq instead of $<$ and/or \geq instead of $>$