Mark Scheme 4723
 January 2007

1 Attempt use of quotient rule to find derivative
allow for numerator 'wrong way round'; or attempt use of product rule
Obtain $\frac{2(3 x-1)-3(2 x+1)}{(3 x-1)^{2}}$
Obtain $-\frac{5}{4}$ for gradient
A1 or equiv
A1 or equiv
Attempt eqn of straight line with numerical gradie
Obtain $5 x+4 y-11=0$
A1 5 or similar equiv

2 (i) Attempt complete method for finding $\cot \theta$ Obtain $\frac{5}{12}$
(ii) Attempt relevant identity for $\cos 2 \theta$

State correct identity with correct value(s) substituted
Obtain $-\frac{119}{169}$

M1 rt-angled triangle, identities, calculator, ...
A1 2 or exact equiv
M1 $\pm 2 \cos ^{2} \theta \pm 1$ or $\pm 1 \pm 2 \sin ^{2} \theta$ or $\pm\left(\cos ^{2} \theta-\sin ^{2} \theta\right)$
A1
A1 3 correct answer only earns $3 / 3$

3 (a) Sketch reasonable attempt at $y=x^{5}$
Sketch straight line with negative gradient Indicate in some way single point of intersection B1
(b) Obtain correct first iterate

Carry out process to find at least 3 iterates in all M1
Obtain at least 1 correct iterate after the first A1
Conclude 2.175

$$
\begin{aligned}
{[0} & \rightarrow 2.21236
\end{aligned} \rightarrow 2.17412 \rightarrow 2.17480 \rightarrow 2.17479 ; ~ ; 2.19540 \rightarrow 2.17442 \rightarrow 2.17480 \rightarrow 2.17479 ;
$$

4 (i) Obtain derivative of form $k(4 t+9)^{-\frac{1}{2}}$
Obtain correct $2(4 t+9)^{-\frac{1}{2}}$
Obtain derivative of form $k \mathrm{e}^{\frac{1}{2} x+1}$
Obtain correct $3 \mathrm{e}^{\frac{1}{x}+1}$
(ii) Either: Form product of two derivatives M1 Substitute for t and x in product M1 Obtain 39.7
Or: Obtain $k(4 t+9)^{n} \mathrm{e}^{\frac{1}{2}(4 t+9)^{\frac{1}{2}}+1}$
Obtain correct $6(4 t+9)^{-\frac{1}{2}} \mathrm{e}^{\frac{1}{2}(4 t+9)^{\frac{1}{2}}+1}$
Substitute $t=4$ to obtain 39.7 A1
5 (i) Obtain $R=\sqrt{17}$ or 4.12 or 4.1
Attempt recognisable process for finding α Obtain $\alpha=14$

M1 any constant k
A1 or (unsimplified) equiv
M1 any constant k different from 6
A1 4 or equiv
numerical or algebraic
using $t=4$ and calculated value of x
A1 3 allow ± 0.1; allow greater accuracy
M1 differentiating $y=6 \mathrm{e}^{\frac{1}{2}(4 t+9)^{\frac{1}{2}}+1}$
A1 or equiv
(3) allow ± 0.1; allow greater accuracy

B1 or greater accuracy
M1 allow for sin/cos confusion
A1 3 or greater accuracy 14.036...
(ii) Attempt to find at least one value of $\theta+\alpha$

Obtain or imply value 61
Obtain 46.9
Show correct process for obtaining second angle M1
Obtain -75

M1
A1 $\sqrt{ }$ following R value; or value rounding to 61
allow ± 0.1; allow greater accuracy

5 allow ± 0.1; allow greater accuracy; max of $4 / 5$ if extra angles between -180 and 180

6 (i) Obtain integral of form $k(3 x+2)^{\frac{1}{2}}$
Obtain correct $\frac{2}{3}(3 x+2)^{\frac{1}{2}}$
M1 any constant k

Substitute limits 0 and 2 and attempt evaluation
Obtain $\frac{2}{3}\left(8^{\frac{1}{2}}-2^{\frac{1}{2}}\right)$
A1 or equiv
for integral of form $k(3 x+2)^{n}$
A1 4 or exact equiv suitably simplified
(ii) State or imply $\pi \int \frac{1}{3 x+2} \mathrm{~d} x$ or unsimplified version

Obtain integral of form $k \ln (3 x+2)$
M1
Obtain $\frac{1}{3} \pi \ln (3 x+2)$ or $\frac{1}{3} \ln (3 x+2)$
A1
Show correct use of $\ln a-\ln b$ property M1
Obtain $\frac{1}{3} \pi \ln 4$
A1 5 or (similarly simplified) equiv

7 (i) State a in x-direction
State factor 2 in x-direction
(ii) Show (largely) increasing function crossing x-axis

Show curve in first and fourth quadrants only
(iii) Show attempt at reflecting negative part in x-axis Show (more or less) correct graph
(iv) Identify $2 a$ as asymptote or $2 a+2$ as intercept State $2 a<x \leq 2 a+2$

B1 allow anywhere in question
B1 2 allow $<$ or \leq for each inequality

8 (i) Obtain $-2 x \mathrm{e}^{-x^{2}}$ as derivative of $\mathrm{e}^{-x^{2}}$
Attempt product rule
Obtain $8 x^{7} \mathrm{e}^{-x^{2}}-2 x^{9} \mathrm{e}^{-x^{2}}$
Either: Equate first derivative to zero and attempt solution
Confirm 2
Or: \quad Substitute 2 into derivative and show attempt at evaluation M1

Obtain 0

B1
*M1 allow if sign errors or no chain rule
A1 or (unsimplified) equiv
M1 dep *M; taking at least one step of solution
A1 5 AG

A1 (5) AG; necessary correct detail required
(ii) Attempt calculation involving attempts at y values

Attempt $k\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+y_{4}\right)$

Obtain $\frac{1}{6}(0+4 \times 0.00304+2 \times 0.36788$
$+4 \times 2.70127+4.68880)$
Obtain 2.707
(iii) Attempt 4(y value) - 2(part (ii))

Obtain 13.3

M1 with each of 1, 4, 2 present at least once as coefficients
with attempts at five y values corresponding to correct x values

A1 or equiv with at least $3 \mathrm{~d} . \mathrm{p}$. or exact values
A1 4 or greater accuracy; allow ± 0.001
M1 or equiv
A1 2 or greater accuracy; allow ± 0.1

9 (i) State $-2 \leq y \leq 2$
State $y \leq 4$
(ii) Show correct process for composition

M1
Obtain or imply 0.959 and hence 2.16
A1
Obtain $g(0.5)=3.5$
Observe that 3.5 not in domain of f

B1 allow <; any notation
B1 2 allow $<$; any notation
right way round
AG; necessary detail required
B1 or (unsimplified) equiv
B1 $\mathbf{4}$ or equiv
(iii) Relate quadratic expression to at least one end of range of $\mathrm{f} \quad \mathrm{M} 1$ or equiv
Obtain both of $4-2 x^{2}<-2$ and $4-2 x^{2}>2$ A1 or equiv; allow any sign in each ($<$ or \leq or $>$ or \geq or $=$)
Obtain at least two of the x values $-\sqrt{3},-1,1, \sqrt{3}$ A1
Obtain all four of the x values A1
Attempt solution involving four x values M1
Obtain $x<-\sqrt{3}, \quad-1<x<1, \quad x>\sqrt{3}$
to produce at least two sets of values
A1 6 allow \leq instead of $<$ and/or \geq instead of $>$

